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Abstract

Advancements in materials bonding techniques have led to the use of reinforced composite pipelines. The use of steel
pipe with a fiber-reinforced composite over-wrap together has produced an exceptionally strong pipe with positive
advantages in weight and corrosion resistively. Understanding the dynamic characteristics of this kind of sub-sea com-
posite pipelines, which often accommodate axial flow of gas, and prediction of their response is of great interest.

This paper presents a state-variable model developed for the analysis of fluid-induced vibration of composite pipe-
line systems. Simply supported, clamped and clamped-simply supported pipelines are investigated. The influence of
fluid�s Poisson ratio, the ratio of pipe radius to pipe-wall thickness, laminate layup, the ratio of liquid mass density
to pipe-wall mass density, the fluid velocity, initial tension and fluid pressure are all considered. The results of our
proposed methodology are compared with those of finite element analysis, using ANSYS software.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The use of pipes made of composite materials for applications in oil fields has become an acceptable
practice. Low to moderate pressure composite and plastic flow lines and gathering line systems for oil
and natural gas have been in service for many years, but they have yet to be accepted in high-pressure nat-
ural gas transmission systems. There are a number of issues that must be overcome to make large diameter
composite pipe a viable alternative in high-pressure natural gas transportation. Piping systems used for
transfer of highly pressurized gas often operate under time-varying conditions imposed by pumps and
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.07.001

* Corresponding author. Tel.: +1 902 494 3935; fax: +1 902 484 6635.
E-mail address: farid.taheri@dal.ca (F. Taheri).

mailto:farid.taheri@dal.ca 


1254 G.P. Zou et al. / International Journal of Solids and Structures 42 (2005) 1253–1268
valves operations, and thus may experience severe vibration induced loading. Examples of such problems
are flow-induced vibration of a pipeline supported above ground level, as well as conveying internal flow.
Noteworthy investigation in this area was first made by Ashley and Haviland (1950) to describe the vibra-
tion characteristics of the Trans-Arabian pipeline. Later, Housner (1952) developed a more realistic equa-
tion to include the Coriolis effects by using Hamilton�s principle. He investigated the buckling phenomenon
that could occur when the flow velocity exceeds a critical value. Long (1955) first investigated clamped pipes
conveying fluid. He showed experimentally that forced motions of clamped pipes, in contrast to the simply
supported ones, were damped by internal flow in the range of flow velocities considered. Many studies have
followed, but the principle aims of those studies were to investigate the effect of flow velocity on the natural
frequencies and the critical flow velocity at which a pipe would lose its stability. The influence of the fluid
pressure was first considered by Heinrich (1956). However, he considered only the special case of zero stiff-
ness. It was not until 1966 that Gregory and Pa€ıdoussis (1966) showed that cantilever pipes could be sub-
jected to oscillatory instabilities (flutter) rather than buckling (divergence). Benjamin (1961) proved the
existence of oscillatory instabilities for a cantilever system of articulated pipes. Chen and Rosenberg
(1971) appears to have been the first investigator who examined the stability of simplify supported pipes
with a flow velocity which had a time dependent harmonic component superposed on the steady velocity.
The divergence (buckling) critical flow velocity for a pinned-free cylinder was also determined analytically
by Triantafyllou and Chryssostomidis (1984). The dynamic behaviour of long and very slender cylinders
(modelled as strings, rather than beams) was also studied by Triantafyllou and Chryssostomidis (1985),
among others. This work was later pursued further to investigate the dynamics of clustered cylinders in ax-
ial flow by Chen (1975), Pa€ıdoussis (1970, 1973, 1979, 2002), Gagnon and Paı̈doussis (1994a,b). These
investigations were conducted because of the applications of such a system in tube-in-shell type heat
exchangers and nuclear reactors. Additional extensions were made to deal with the dynamics of pipes con-
taining highly annular flow (see, e.g. Pa€ıdoussis et al., 1990; Mateescu et al., 1994a,b, 1996). The linear and
nonlinear dynamics of cantilevered cylindrical pipes with axial flow was investigated by Pa€ıdoussis et al.
(2002). They stated that increase in flow velocity was the primary cause of loses of stability by divergence.
An experimental study the interference effect on vortex-induced vibration of two side-by-side elastic cylin-
der, fixed at both end in a cross-flow was also presented by Wang et al. (2003). The turbulence-induced
vibration of a circular cylinder in water flow with supercritical Reynolds number was experimentally stud-
ied by Koji et al. (2001). The effect of Reynolds number, fluctuating force coefficients, Strouhal number and
correlation length on the vibration were evaluated. Very recently Cheng et al. (2003) proposed a novel tech-
nique to perturb interaction between vortex shedding from a bluff body and vortex-induced vibration of the
body. A spectral element model for a simply supported straight pipeline conveying steady internal fluid was
also presented by Lee and Oh (2003).

Another important application to be considered is the extremely long (a kilometer or longer) arrays of
several parallel cylinders that host sonar sensors that are towed on the sea surface or sufficiently submerged
to avoid wave induced motions. These pipe sensors pick up acoustic signals directed at, and redirected from
the sea-bed strata. The accuracy of the signals, which can be affected by vibration, is of extreme importance
for detaching the existence of oil or gas (see, e.g. Jan and Alexei, 2002; Didier et al., 2002).

All above-mentioned methods however have only considered pipelines made of isotropic materials, but
their integrity has not been assessed and verified for pipes made of composite materials. The vibration fre-
quencies of these pipes were obtained by the Fourier expanding method.

The present study presents details of a state-variable model developed for the analysis of fluid-induced
vibration of laminated composite pipeline systems. To the knowledge of the authors the response of pipes
made of composite materials under the influence of fluid velocity, initial tension and fluid pressure have not
been widely explored. With the aim of contributing to the present status of our knowledgebase, we
conducted a comprehensive investigation to characterize the response of such pipes subject to various
parameters. Pipes having simply supported, clamped and clamped-simply supported boundary conditions
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were considered. The results obtained through the proposed methodology were verified with those obtained
from finite element analysis (FEA), and good comparison was obtained.
2. Derivation of composite pipe dynamic equations

The derivation is initiated by considering a representative element (Pf), with the length of dx, as shown in
Fig. 1.

The fluid moves along the y-axis (see Fig. 1 for the coordinate system) with velocity of V ¼ oy
ot þ U g
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where qg, qp and qw are the densities of the natural gas, pipe�s material and sea water, respectively;
Ag ¼ p

4
D2

in, Aw ¼ p
4
D2

out (see Blevins, 2001; Bai et al., 2001) and Ap = Aw�Ag are the cross-section areas of
gas, added sea water and pipe, respectively; Din and Dout are the inside and outside diameters of the pipe
respectively (see Fig. 1); Ug is the velocity of the moving gas (in the x-direction) and Ca is the added mass
coefficient (see Blevins, 2001).

The work done by the pre-tension force, which can be created by sub-sea waves can be written as
θ

Fig. 1. A fluid-conveying pipe with pinned ends (simply supported) at sub-sea and the coordinate system.
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where T is the pre-tensioning force in the pipe.
The work done by the gas through shear friction and pressure can be expressed by:
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where P is the gas pressure. If the downstream end is not free to flow axially, or even not completely free,
internal pressurization induces an additional tensile force, which for a thin pipe is equal to �2PmAg, where t
is the Poisson�s ratio of the pipe (Naguleswaran and Williams, 1968). Thus, the equivalent pressure can be
represented in a general form as P(1�2md)Ag, in which d = 0 signifies that there is no constraint to the axial
flow of at the downstream end, otherwise d = 1. In Eq. (3) �f� is the Fenning friction factor, which can be
approximated by (Gregory and Forgarasi, 1985):
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where NRe is the Reynolds number, l is the gas viscosity, k is the absolute pipe roughness and Dg is the
internal diameter of the pipe.

The strain energy of the dx segment of the pipe can be represented by:
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and Q11 represent the stiffness terms for the composite, rk is radius of the kth layer of cylinder. For a cylin-
drical pipe, R is:
R ¼ pðA11�r3 þ D11�rÞ; where �r ¼ ðrin þ routÞ=2 ð7Þ

Carrying out the usual steps in writing the dynamic force terms:
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Using the Hamilton�s principle
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Finally, the equilibrium equation of motion for the sub-sea pipeline system can be written as:
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where
Iw ¼ qwAwCa ð12Þ
3. The Ritz method

The inherent coupling phenomenon associated with the vibration behaviour of the pipeline system
complicates the derivation of an analytical solution to the above equation. The Ritz method, an approx-
imated method, however can be employed to solve the equation. Within this method, it is assumed that
the solution of the vibration problem of the pipeline system is composed of a series of linear combination
of admissible functions Ui(x/L), multiplied by the time-dependent generalized coordinates (Zou et al.,
2003), that is:
yðx=L; tÞ ¼
X
r
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where Ui(x/L) are the eigenfunctions of the pipeline. The general form of the eigenfunctions is given in
Kelly (1993).

By substituting Eq. (13) into Eq. (11), and using the Ritz method, the following equation can be
obtained:
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It should be noted that [G] is not the conventional damping matrix; it is an unsymmetric matrix which var-
ies according to the vibration mode.
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4. State-space analysis

Solution of the above nonsymmetric equation of motion can be readily carried out by placing the equa-
tions in the state-space form. The state vector is defined to be:
fnðtÞg ¼ fqðtÞgT f _qðtÞgT
� �T ð18Þ
Correspondingly, the state-space form of the equations of motion is represented by:
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Note that because r is the length of each of the Ritz series, the state-space equations are a set of 2r coupled
first-order differential equations.

Lack of symmetry in the coefficient matrix of the state vector necessitates solutions of the general left and
right eigenvalue problem, such that
½½W
 � xj½H

fujg ¼ f0g; ½½W
r � xj½H
r
f~ujg ¼ f0g ð21Þ
where xj are the eigenvalues and the eigenvectors {uj} and their adjoints f~ujg are normalized such that the
bi-orthogonality conditions are satisfied such that
f~ujg
r½H
fung ¼ djn; and f~ujg

r½W
fung ¼ xjdjn ð22Þ
The eigenvalues depend on the fluid velocity because of the [G]. The critical speeds are the values of Ug at
which the imaginary part of any of the minimum eigenvalues zero. The real part of the eigenvalue is related
to the amount of damping exhibited by a given eigenvalue. The logarithmic decrements dj can be calculated by:
dj ¼
�2pReðxjÞ
jImðxjÞj

ð23Þ
Divergence and instabilities may be identified by searching for the speed Ug that induces an eigenvalue dj

having a negative logarithmic decrements (i.e., a positive real part).
5. Examples

The results of the state-variable fluid-induced vibration method have been validated numerically for a
concrete coated steel pipeline and composite pipelines with different lay ups.

5.1. Example 1: Cement coated steel pipeline

In this example, the BATS pipeline system in the Atlantic sea is considered. In this system, steel pipelines
are coated by cement. The geometry and material properties are provided in Table 1, while the sub-sea
properties are tabulated in Table 2. The calculated vibration results for the simply supported, cantilever
and clamped-simply supported pipelines compared with the FEM results are provided in Tables 3–5,
respectively. The commercial finite element program ANSYS is employed for modeling the cemented
coated steel pipeline using eight node isotropic 3D solid elements (SOLID 45), with the mesh density of
20 (in the circumferential direction) · 200 (in the axial direction) · 2 (in the radial direction). Good agree-
ments are observed from these tables. In Table 4 we also compare the results from our analytical solution



Table 1
Specifications of the cement coated steel pipe

Quantity Symbol Value

Geometry of pipeline

Outside diameter D 1.0668m
Pipe thickness ts 0.0342m
Cement coating thickness tc 0.030175m
Outside diameter of cement coating Dc 1.12776m
Cross-section area of pipe A 0.783844m2

Span length L 59.1312m

Material properties

Density of steel qs 7850kg/m3

Density of cement qc 3043.508kg/m3

Density of sea water qw 1020kg/m3

Density of pure gas qg 2.864kg/m3

Density of gas content q0
g 105kg/m3

Elastic modulus of steel Es 2 · 1011N/m2

Elastic modulus of cement Ec 2.4 · 1010N/m2

Design parameters

Design pressure P 9.253 · 106N/m2

Residual tension T 8,896N
Content gas velocity V 4.59m/s
Strouhal number S 0.2
Poisson�s ratio m 0.312
Gas viscosity l 0.01019744kgs/m2

Absolute pipe roughness k/D 1 · 10�8

Table 2
Sub-sea wave properties

Quantity Symbol Value

Added mass coefficient Ca 1.0
Drag coefficient CD 1.45
Mean flow U 5m/s
Amplitude of sinusoidal flow Um 3m/s

Table 3
Calculated vibration frequencies of the simply supported pipeline

Mode Structural frequency (Hz)

Pipe without fluid (analytical results) Pipe without fluid (FEM results)

1 0.7382 0.72173
2 2.9526 2.9083
3 6.6435 6.5048
4 11.8106 11.565
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with the FEM results for a clamped pipe that experiences and internal fluid pressure of 3 MPa. The results
indicate that the first vibration frequency will be almost zero at that pressure.

In order to observe the fundamental theoretical influence of one parameter at a time (i.e., the influence of
the fluid velocity, internal pressure and initial tension), when considering a parameter, the others are as-



Table 4
Calculated vibration frequencies of the clamped pipeline

Mode Structural frequency (Hz)

Pipe without fluid
(analytical results)

Pipe without fluid
(FEM results)

Pipe with fluid pressure of 3 MPa
(analytical results)

Pipe with fluid pressure of 3 MPa
(FEM results)

1 0.2630 0.2587 0.0000 0.0000
2 1.6480 1.6125 1.1003 1.1194
3 4.6144 4.5395 4.0907 5.3254
4 9.0424 8.8523 8.4016 9.3538

Table 5
Calculated vibration frequencies of the clamped-simply supported pipeline

Mode Structural frequency (Hz)

Pipe without fluid (analytical results) Pipe without fluid (FEM results)

1 1.1532 1.1255
2 3.7369 3.6861
3 7.7968 7.6147
4 13.3331 13.094
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sumed to be zero. Three cases were therefore considered to investigate the influence of (a) fluid velocity, (b)
the internal pressure, and (c) the initial tension.

5.1.1. Case (a): Influence of the fluid velocity (while keeping P = 0 and T = 0)

The first three vibration frequencies as a functions of fluid velocities in the simply-supported, clamped
and clamped-simply supported pipes were determined and are shown in Figs. 2–4, respectively. We can
see from the figures that increasing fluid velocity decreases the vibration frequency of the pipeline for all
considered boundary conditions. The velocity reaches to a critical value (i.e., V/Vc = 1, albeit a theoretical,
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Fig. 2. Variation of the first three fundamental frequencies as a function of fluid velocities for the simply-supported pipe.
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pipeline.
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and not a realistic or practical value), at which the first frequency becomes zero, thus indicating that the
pipe will buckle (Dodds et al., 1965). The lowest critical velocity is observed for the clamped pipe and
the highest one was determined to occur for the clamped-supported pipe.
5.1.2. Case (b): Influence of the internal pressure (while keeping Vg = 0 and T = 0)

The relationship between the internal pressure and vibration frequency for the simply supported,
clamped and clamped-simply supported pipes are shown in Figs. 5–7, respectively. We can see from the
figures that the existence of internal pressure decreases the natural frequency of the pipe for the three
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boundary conditions. The first vibration mode frequency decreases with the increase in internal pressure P.
When P reaches a certain value then the first mode frequency becomes zero (f1 = 0) hence buckling would
prevail. The figure shows that the fluid pressure influences the vibration frequency of the clamped pipe. The
internal pressure, P, causes a compressive axial force in the pipeline. If the pipeline is perfectly straight, the
internal pressure would not induce a lateral force on the pipe. For pipes with any bending curvature,
the existence of the force can generally aggravate the lateral bending of the pipe.
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5.1.3. Case (c): Influence of the pre-tensioning force (while keeping V = 0 and P = 0)

The dependency of the vibration frequency to the initial tension force or pre-tensioning force (T) of the
pipes was evaluated and compared with the FEM results for all aforementioned boundary conditions, and
the results are shown in Figs. 8–10, respectively. The figures show that the existence of initial tension (also
called the residual tension) increases the vibration frequency of the pipeline. The commercial software
ANSYS was used for this study. The model was constructed with PIPE16 element of ANSYS with 20 ele-
ments along the axial direction, simulating response of an elastic pipeline with no internal fluid, subjected
only to a pretension force. It is however observed that a large pre-tensioning force (T) provides only a small
increase in vibration frequency. It is therefore concluded that the notion of increasing the pre-tension force
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Fig. 8. Influence of pre-tensioning force on the fundamental frequencies of the simply supported pipe.
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to increase pipe�s natural frequency is not a feasible approach. As it can be seen, a good comparison of
prediction between our proposed results and the FEA results are observed.

In reality, the above-described parameters do not exist independent of one another. A pipe span is al-
ways subjected to a combination of internal pressure, pre-tension force and fluid velocity at the same time.
The natural frequency is the result of superposing the influence of all these factors, including span length,
mass of pipe and fluid, stiffness of the pipe, fluid velocity, internal pressure, and residual tension. In the next
section, we therefore continue our investigation into influence of a combination of those parameters on the
pipes� natural frequency.
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Table 6
Properties of the materials used in formation of the pipes

Layer no. Reinforcement Ex (GPa) mxs G (GPa) Ply thickness (mm)

1 1-oz polyester fiber mat 3.45 0.25 1.38 0.254
2 1.5-oz chopped strand glass mat 8.31 0.41 2.58 1.016
3 8-oz knitted glass mat. 6.21 0.15 1.83 0.559
4 19.2-oz plane woven glass mat 28.88 0.21 3.75 0.559
5 18-oz woven roving glass mat 20.68 0.15 3.28 0.610
6 28.6-oz woven roving glass mat 14.38 0.10 3.85 1.016
7 Pure epoxy resin 3.45 0.25 1.38 N/A
8 Pure vinylester resin 3.45 0.25 1.38 N/A

Table 7
Calculated vibration frequencies for a composite pipe made of fiberglass epoxy

D0 (mm) L (m) Pipe wall lay up configuration
(from outside to inside)

Laminate stiffness Pipe vibration frequency (Hz)

#5 (mm) #6 (mm) #7 (mm) A11 · 107 (N/m) D11 (Nm) R (Nm2) No fluid With fluid velocity
V = 12m/s

60.22 1.30 1.98 0 2.41 5.0566 87.1528 3.4632 · 103 58.6325 52.8533
88.62 1.33 1.98 0 2.36 5.5305 90.8353 1.1855 · 104 83.5062 71.3084
114.30 5.60 2.24 0 2.21 7.6281 161.5345 2.8805 · 104 6.3814 5.1830
168.28 5.60 2.41 0 2.54 7.3630 216.7862 1.0286 · 105 9.2809 7.1555
219.08 5.60 3.25 0 2.13 5.0382 84.2246 2.9239 · 105 13.4899 9.8432
273.05 5.60 3.35 0 2.79 6.0100 125.0215 6.0356 · 105 15.9635 11.4924
323.85 5.60 1.98 1.57 2.41 8.0816 238.7322 9.2581 · 105 16.4194 11.8570
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Table 8
Calculated vibration frequencies for a composite pipe made of fiberglass epoxy

D0 (mm) L (m) Pipe wall lay up configuration
(from outside to inside)

Laminate stiffness Pipe vibration frequency (Hz)

#3 (mm) #5 (mm) #7 (mm) A11 · 107 (N/m) D11 (Nm) R (Nm2) No fluid With fluid velocity
V = 12m/s

48.08 1.29 1.34 1.46 1.98 4.6912 52.8678 1.4992 · 103 41.7439 38.8897
60.20 1.30 2.37 0.86 2.46 4.0071 54.0520 2.6615 · 103 46.5244 42.6126
88.80 1.33 1.31 1.43 2.24 4.7848 70.7234 1.0988 · 104 71.8564 63.2505
114.30 5.60 1.25 1.36 2.51 4.5534 60.9413 2.3282 · 104 5.5239 4.6222
168.28 5.60 1.49 1.63 1.98 5.2443 74.7273 8.9076 · 104 8.1425 6.4107
219.08 5.60 2.28 0.62 2.46 3.8836 84.9313 1.4799 · 105 8.4971 6.5281
273.05 5.60 2.22 1.82 2.24 6.2274 128.9144 4.6293 · 105 13.0986 9.6983
323.85 5.60 2.51 1.37 2.51 5.4167 107.9712 6.8158 · 105 14.7928 10.3971

Table 9
Calculated vibration frequencies for a hybrid polyester/glass fiber-reinforced epoxy pipe

D0 (mm) L (m) Pipe wall lay up configuration
(from outside to inside)

Laminate stiffness Pipe vibration frequency
(Hz)

#1
(mm)

#5
(mm)

#6
(mm)

#7
(mm)

A11 · 107

(N/m)
D11

(Nm)
R (Nm2) No fluid With fluid velocity

V = 12m/s

48.26 1.29 0.31 3.75 0 2.84 9.0564 281.4061 2.5346 · 103 49.6973 47.4957
168.28 5.60 0.22 1.61 3.58 3.05 9.8530 535.9123 1.5809 · 105 8.0970 7.0854
273.05 5.60 0.24 0.57 4.75 2.79 9.2930 460.3722 6.8050 · 105 12.5302 10.1490
323.85 5.60 0.23 1.69 3.74 2.92 10.2120 562.5683 1.2570 · 106 15.9547 12.4526

Table 10
Calculated vibration frequencies for a hybrid polyester/glass fiber-reinforced vinylester pipe

D0 (mm) L (m) Pipe wall lay up configuration (from
outside to inside)

Laminate stiffness Pipe vibration frequency (Hz)

#1
(mm)

#5
(mm)

#6
(mm)

#4
(mm)

#8
(mm)

A11 · 107

(N/m)
D11

(Nm)
R (Nm2) No fluid With fluid velocity

V = 12m/s

47.90 1.29 0.22 1.05 0 0.96 2.08 5.8926 68.4850 1.8163 · 103 52.6998 48.2005
60.17 1.30 0 1.69 0 0.52 1.98 5.8233 76.0264 4.0184 · 103 69.7569 61.3713
88.65 1.30 0 1.98 0 0 1.98 4.8984 64.0118 1.1693 · 104 98.5970 80.6695
114.30 5.60 0 1.69 0 0 2.64 4.5305 83.0623 2.3405 · 104 6.5397 5.2569
168.28 5.60 0 2.49 0 0 2.34 6.1049 116.1515 1.0472 · 105 10.2840 7.6101
219.08 5.60 0 2.95 0 0 2.57 7.1582 173.4168 2.7385 · 105 13.6164 9.7524
273.05 5.60 0 3.48 0 0 2.13 8.1124 183.7781 6.0946 · 105 18.1741 12.2298
323.85 5.60 0 2.13 1.78 0 1.73 7.7372 188.9874 9.7909 · 105 18.8961 12.8579
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5.1.4. Case (d): Influence of the combined fluid velocity and pressure

The influence of combined fluid pressure and speed ratios of V/Vc = 0, 0.3014 and 0.6028 for the simply
supported pipe is shown in Fig. 11. It can be seen that as the fluid pressure increases, the frequency de-
creases and finally vanishes. At zero frequency, the system becomes unstable and buckling would occur.
Under the same fluid pressure, the fluid velocity attains a larger value, as seen in Fig. 11, and the pipe�s
frequency decreases. In this case, the pipe can sustain a lower axial pressure thus buckling would occur.
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5.2. Example 2: Influence of laminate lay up

Four different grades of centrifugally cast composite pipes were investigated. These four grades of pipes
consisted of eight different reinforcement configurations as noted in Table 6. The table presents the mate-
rials� mechanical properties, densities, and nominal ply thicknesses. Various pipes were formed by combin-
ing the materials tabulated in Table 6 and their vibration characteristics were investigated by our
methodology and FEM. Tables 7–10 list all dimensions, laminate stiffness A11 and D11, the calculated vibra-
tion frequencies of pipes made of the various combinations of materials listed in Table 6, without fluid, and
with fluid (gas with velocity of V = 12m/s). The gas density was taken as 105kg/m3 and no seawater effect
was considered. The first column of each table refers to the pipes� outside diameter and the proceeding col-
umns tabulate the pipes� length and wall configuration (with reference to the layers outlined in Table 6). The
same tables tabulate the values of A11, D11 and R. The important point is to realize that unlike the popular
notion that the natural frequency of a pipe is a function of pipe�s flexural stiffness, D11, from the data and
results reported in Tables 7–10 one can see that pipes� natural frequencies are indeed a function of R, which
it is itself a function of D11 and A11.
6. Conclusions

The Ritz method was successfully used to characterize the fluid-induced vibration of various composite
pipe systems. Thin-walled composite theory was employed in developing the formulation. The formulation
was developed to handle arbitrary boundary conditions. Adaptation of the model for a specific set of geo-
metric boundary conditions requires only the selection of a suitable set of basic functions. The state-space
formulation retained all fluid-pipe coupling parameters and neoconservative effects resulting from the
boundary constraints. Numerical analyses were also conducted to investigate the effect of various influenc-
ing parameters, such as the fluid�s velocity and pressure, pipe�s pre-tensioning force and wall configuration.
The results obtained based on the proposed formulation agree favorably with those obtained through finite
element analysis.
Acknowledgment

The financial support of NSERC and the Atlantic Innovation Fund in the form of research grants to the
third author in support of this work is gratefully acknowledged.
References

Ashley, H., Haviland, G., 1950. Bending vibrations of a pipe line containing flowing fluid. ASME Journal of Applied Mechanics 72,
229–232.

Bai, Y., Bhattacharyya, R., McCormick, M.E., 2001. Pipeline and risers. In: Elsevier Ocean Engineering Book Series, vol. 3, Elsevier
Science Ltd, Oxford, UK.

Benjamin, T.B., 1961. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory and II. Experiments. Proceedings of Royal
Society 293 (A), 512–542.

Blevins, R.D., 2001. Flow-Induced Vibration. Krieger Publishing, Melbourne, FL, USA.
Chen, S.S., 1975. Vibration of nuclear fuel bundles. Nuclear Engineering and Design 35, 399–422.
Chen, S.S., Rosenberg, G.S., 1971. Vibration and stability of a tube conveying fluid. USAEC Report ANL-7762, Argonne National

Laboratory, Argonne, IL.
Cheng, L., Zhou, Y., Zhang, M.M., 2003. Perturbed interaction between vortex shedding and induced vibration. Journal of Fluids and

Structures 17 (7), 887–901.



1268 G.P. Zou et al. / International Journal of Solids and Structures 42 (2005) 1253–1268
Didier, B., Graham, W., Laurent, D., 2002. Nuggets: demonstrating the use of flexible flowlines as an alternative to traditional thinking
in subsea pipeline systems. Pipes and Piplines International 47 (4), 17–26.

Dodds, H.L. Jr., Harry, L.R., 1965. Effect of high-velocity fluid flow on the bending vibrations and static divergence of a simply
supported pipe. National Aeronautics and Space Administration Report NASA TN D-2870.

Gagnon, J.O., Pa€ıdoussis, M.P., 1994a. Fluid coupling characteristics and vibration of cylinder clusters in axial flow. Part I: Theory.
Journal of Fluids and Structures 8, 257–291.

Gagnon, J.O., Pa€ıdoussis, M.P., 1994b. Fluid coupling characteristics and vibration of cylinder clusters in axial flow. Part II:
Experiments. Journal of Fluids and Structures 8, 293–324.

Gregory, G.A., Forgarasi, M., 1985. Alternate to standard friction equation. Oil and Gas Journal 1 (April), 124–127.
Gregory, R.W., Pa€ıdoussis, M.P., 1966. Unstable oscillation of tubular cantilevers conveying fluid, I. Theory and II Experiments.

Proceedings of the Royal Society 293 (A), 512–542.
Heinrich, G., 1956. Vibrations of tubes with flow. Zeitschrift für Angewandte Mathematik und Mechanik 36 (11/12), 417–429.
Housner, G.W., 1952. Bending vibrations of a pipe line containing flowing fluid. ASME Journal of Applied Mechanics 19, 205–209.
Jan, J., Alexei, T., 2002. Implementation of ISO-14000 standards in routine environmental of oil and gas fields by means of GIS and

remote sensing. Journal of Canadian Petroleum Technology 41 (9), 11–15.
Kelly, S.G., 1993. Fundamentals of Mechanical Vibrations. McGraw-Hill, NY, USA.
Koji, I., Masaki, M., Takaaki, S., Akira, Y., Kenji, O., 2001. Evaluation of turbulence-induced vibration of a circular in supercritical

Reinolds number flow. JSME International, Series B: Fluids and Thermal Engineering 44 (4), 721–728.
Lee, U., Oh, H., 2003. The spectral element model for pipelines conveying internal steady flow. Engineering Structures 25 (8), 1045–

1055.
Long Jr, R.H., 1955. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. ASME Journal of

Applied Mechanics 22 (1), 65–68.
Mateescu, D., Paı̈doussis, M.P., Belanger, F., 1994a. Unsteady annular viscous flows between oscillating cylinders. Part I:

Computational solutions based on a time-integration method. Journal of Fluids and Structures 8, 489–507.
Mateescu, D., Paı̈doussis, M.P., Belanger, F., 1994b. Unsteady annular viscous flows between oscillating cylinders. Part II: A hybrid

time-integration solution based on azimuthal Fourier expansions force configurations with annular back steps. Journal of Fluids
and Structures 8, 509–527.

Mateescu, D., Mekanik, A., Paı̈dousis, M.P., 1996. Analysis of 2-D and 3-D unsteady annular flows with oscillating boundaries, based
on a time-dependent coordinate transformation. Journal of Fluids and Structures 10, 57–77.

Naguleswaran, S., Williams, C.J.H., 1968. Lateral vibration of a pipe conveying a fluid. Journal Mechanical Engineering Science 10
(3), 228–238.

Paı̈doussis, M.P., 1970. Dynamics of submerged towed cylinders. Eighth Symposium on Naval Hydrodynamics: Hydrodynamics in the
Ocean Environment. Ocean of Naval Research, US Department of the Navy ARC-179, pp. 981–1016.

Paı̈doussis, M.P., 1973. Dynamics of cylindrical structures subjected to axial flow. Journal of Sound and Vibration 29, 365–385.
Paı̈doussis, M.P., 1979. The dynamics of clusters of flexible cylinders in axial flow: theory and experiments. Journal of Sound and

Vibration 65, 391–417.
Paı̈doussis, M.P., 2002. Fluid–Structure Interactions: Slender Structures and Axial Flow, vol. 2. Academic Press, London.
Paı̈doussis, M.P., Mateescu, D., Sim, W.G., 1990. Dynamics and stability of a flexible cylindrical narrow coaxial cylindrical duct

subjected to annular flow. Journal of Applied Mechanics 57, 232–240.
Paı̈doussis, M.P., Grinevich, E., Adamovic, D., Semler, C., 2002. Linear and nonlinear dynamics of cantilevered cylinders in axial flow.

Part 1: Physical dynamics. Journal of Fluids and Structures 16 (6), 691–713.
Triantafyllou, G.S., Chryssostomidis, C., 1984. Analytic determination of the buckling speed of towed slender cylindrical beams.

ASME Journal of Energy Resources Technology 106, 246–249.
Triantafyllou, G.S., Chryssostomidis, C., 1985. Stability of a string in axial flow. ASME Journal of Energy Resources Technology 107,

421–425.
Wang, Z.J., Zhou, Y., So, R.M.C., 2003. Votex-induced vibration characteristics of two fixed-supported elastic cylinders. Journal of

Fluids Engineering, Transactions of ASME 125 (3), 551–560.
Zou, G.P., Naghipour, M., Taheri, F., 2003. A nondestructive method for evaluating natural frequency of glued-laminated beams

reinforced with GRP. Journal of Nondestructive Testing and Evaluation 19 (1–2), 53–65.


	Fluid-induced vibration of composite natural gas pipelines
	Introduction
	Derivation of composite pipe dynamic equations
	The Ritz method
	State-space analysis
	Examples
	Example 1: Cement coated steel pipeline
	Case (a): Influence of the fluid velocity (while keeping P=0 and T=0)
	Case (b): Influence of the internal pressure (while keeping Vg=0 and T=0)
	Case (c): Influence of the pre-tensioning force (while keeping V=0 and P=0)
	Case (d): Influence of the combined fluid velocity and pressure

	Example 2: Influence of laminate lay up

	Conclusions
	Acknowledgment
	References


